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ABSTRACT

In earlier reports, cellular acceptors were
studied whose languages are sets of d-graphs , i.e.,
labelled graphs of bounded degree whose arcs at each

ii node are numbered . This report discusses acceptance
tasks that depend on the concept of d-graph
isomorphism -- in particular, the task of deciding
whether a d-graph has a d-subgraph isomorphic to a
given d-graph.
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1. Introduction

Cellular acceptors whose languages are sets of d—graphs

(labelled graphs of bounded degree whose arcs at each node

are numbered) were studied in [1-2], where the terminology

and notation used in the present paper are defined. This

paper discusses acceptance tasks that depend on the concept

of d-graph isomorphism -- in particular, the task of deciding

whether a d-graph has a d-subgraph isomorphic to a given d-

graph.

Given two node labelled graphs 
~1 

= (N1, A1, f1) and

= (N2 , A2, f2) where f 1, f2 are the node labelling func-

tions , y
~ 

is isomorphic to if there exists a bijection b

from N1 to N2 such that f1(n) = f2 (b(n) ) YnEN1 and (m,n)~ A1
if f. (b(rn), b(n))~ A2. A d1—graph r1 = (N1, A1, f1, g1) and a

d2-graph r2 = (N2, A2, f2, g2) are isomorphic (denoted by

- ~2 ) if f. their underlying graphs u(r1) and U(r2) are

isomorphic. Here we allow d1 ~ d2. A subgraph of a d-graph

r= (N, A, f , g) is denoted by (N ’ , A ’ , f IN ’ , gIA’) where

N ’~ N and A ’~ A and if (m,n)~.A’ then mEN ’ and n~N ’ . Note that

(N ’ , A ’ , fIN’ , gIA ’) is not necessarily a d-graph , since

some of the nodes may not have exactly d neighbors . However ,

we can always attach # nodes so as to make it into a d-graph. 
- 

-

A labelled graph ~ is isomorphic to I’ if ~ U(1’), and ct is

isomorphic to a subgraph of r if ~ U ( r ’ )  for some subgraph

r ’ of r. In the f~ 11owing , we will consider only connected

d- ra hsg p .

___ L~I~ ~
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2. Graph isomorphism

In this section , we will consider acceptance tasks that

depend on graph isomorphism. Specifically, given ~i labelled

graph a of degree ~ d, we will find a finite state acceptor

Ma such that (F , Ma i H) accepts F if f. a is isomorphic to F

and rejects F otherwise.

We first need

Proposition 1. For every integer r>O , there is a finite

state acceptor Mr such that the cellular d—graph acceptor

(F, M , H) with distinguished node D accepts all d-graphs F

whose nodes are all within distance r from D in 2r+l steps,

and when it accepts , every node is in a different state.

Proof: Given any d-graph F , the cellular d-graph acceptor

(I’ , Mr~ 
H) operates as follows : the distinguished node D

sends out a message S which propagates to the nodes at dis-

tance r from D. The paths traveled by S define a spanning

tree of I’, and each node is identified uniquely by marking

each node ’s state with a sequence of arc end numbers which

define the unique path from D to the node. Specifically,

when a neighbor of D receives S, its state is marked with

the number i if it is the ith neighbor of D. It then sends

the message (S,i) to its neighbors. When an unmarked node

in receives the message (S,il,...,ik), k~ l, from node n and m

is the jth neighbor of n, then m marks its state with

(i1, . .  ‘~ k’~~ 
and sends (S,i1,... ‘1k’~~ 

to its neighbors.

If a node receives a message from more than one neighbor



_____________________________________________________________  - 
____________

simultaneously, it can choose to accept one of them, say the

one sent by the lowest-numbered neighbor. Since the paths

f rom D to each node are all dif ferent, the sequences of

numbers in the states of the nodes are distinct.

If a node m1 is marked with ~~~~~~~~ .,i~ ) and one of

its neighbors, say m2, is still unmarked, then m2 is at dis-

tance r+l away from D. A rejection signal is thus sent to D

because the graph contains nodes more than distance r away.

If no rejection signal is received after 2r+l steps, r is

accepted.!!

Given a node-labelled graph a of degree ~ d, we can

find its diameter r and construct its spanning tree Ta using

the method in Section 1.3.1 of [2). The height of the span-

fling tree is ~. r and associated with each node is a level

number. The level numbers of a node and its neighbors differ

by at most 1; this follows from the way the tree is con-

structed. Now we can prove

Proposition 2. For any labelled graph a of degree ~

there exists an Ma such that the cellular d-graph acceptor

(r , M , H) with distinguished node D accepts F if a~~I’ and

rejects F otherwise.

Proof: Ma first simulates the action of M , where r is the

diameter of a, in the first r steps. It sends a rejection

signal to the distinguished node D if it finds a node at dis-

tance more than r from D, since in this case r cannot be

isomorphic to a. At the end of step r , every node of r has
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a unique identity represented in its state.

Step r+l+i (O~.i~.h) identifies the nodes corresponding

to level k-i nodes of Ta based only on the knowledge that

the node has the right neighbors to serve as its Sons ifl Ta~
In the states of these nodes, the numbers of the nodes that

are to be its descendents are recorded. Thus at the end of

step r+1+h, the nodes indicating that they can be the root

of Ta are saying that the assignments in their states are

sure that all the arcs of Ta exist , but the arcs in a and

not in Ta will have to be checked . More specifically ,

Step r+l: Each node decides if it can be a level h

node of Ta by looking at its label . A node

that is qualified indicates this fact by re-

cording in its state ([n1,id)] ,..., [(nk,id)]),

~ n~ if i ~ j, where id is the unique

identity of the node obtained in previous

steps , and the ni ’s are the possible level Ii

nodes it can be. The number k is at most

the number of level h nodes of T , so thea

length of the state is bounded. All other

nodes are in some neutral state.

Step r+2: Each node looks at its neighbors. If it has

the right level h neighbors to serve as its

Sons lfl Ta and qualify it to be a level h-i

node, then it changes its state to

( [  (n1,id) , (n11, id11) ,. . . , (fl
1 

,id~ .)] 
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id), (n21, ~~~~~~~~~~~~~~~~ id2~~ )J~

~~~k’ 
id), 

~~kl’ 
idkl),...;(nkj I id~1 )))

Here id ~ ~~~~~~~~ and id~~ ~ ~~~~ if i ~
id is the unique identity of the node. Each

[(n~~ id),...,(n31 , 
id~~~ )] indicates that

this node can be node n~ of TaD the subtree

of T
~ 
at n~ consists of nodes ~~~~~~ .,n31 ,

and they correspond to nodes with identities

id.11...,id.1 respectively . For each node ,:~the numbers of level h-l nodes it can be

is bounded and the possible assignment from

- . - its neighbors to the subtree of Ta is also

bounded. Therefore the length of the states

is bounded. All other nodes are in some

neutral state regardless of their previous

states.

Step r+l+i: The qualified level h-i nodes record in

their states the assignment of nodes to serve

as the subtree of Ta at the level h-i node

it qualifies to be. Of course an assignment

is made only if no node in the assignment

corresponds to two different nodes of a.

_ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _  _ _ _



Step r+l+h: The possible root nodes with the assignments

of all the nodes of Ta are known. These

assignments are based on the knowledge that

the arcs in Ta exist. Therefore each of

these assignments gives a subgraph of F

isomorphic to T .

Starting at Step r+h+2, each qualified root node

initiates signals to check each assignment recorded in its

state to make sure that all the arcs in a exist and no other

arcs are present. This is done by transmitting the assign-

ment to each node. If a node not in the assignment receives

the assignment signal, this means that 1’ has more nodes than

a and it cannot be isomorphic to a; thus a rejection signal

is sent to the distinguished node to reject F. If a node is

in the assignment, when it receives the signal , it makes sure

that all the arcs incident upon it are connected to the nodes

with the correct identities as in a. Any time a node finds

an arc out of order, it sends a cancellation signal to report

to the root node of this assignment to delete the assignment.

If after 2h steps, the qualified root node finds that it

still has uncancelled assignments, then it can send a success

signal to the distinguished node D. When D gets a success

signal, it accepts. However , if at the end of step

r+l+h+2h+r no success signal is received by D, this means

there is no successful assignment. This is because either

the assignments made at step r+l+h are all cancelled or there
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is no assignment at all at step r+l+h, since there may be too

few nodes in r , or it is not possible even to find a subgraph

of F isomorphic to Ta• In any case, I’ is not isomorphic to

a and r is rejected.

An alternate method to test for isomorphisin is: first

give each node a unique identity as above , but starting at

step r+l, the nodes ’ identities are transmitted to and

collected by the distinguished node D. At the same time,

the number of non— # nodes in 1’ is counted and compared with

k, the number of nodes in a. If these two numbers are not

equal, D rejects F; otherwise D sends out k! signals , each

specifying an assignment of the node identities of the nodes

to the nodes of a. These signals propagate from neighbor to

neighbor. As in the other method , each node checks its arcs

as the signals are received and sends cancellation messages

if any incident arc is not as in a. 2r steps after D sent

out the U messages, if there is still an assignment at D,

then it accepts r , otherwise it rejects. Since counting and

propagation of the messages all take order diameter time ,

this method also detects graph isomorphism in .iiameter tirne.//
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3. Subgraph isomorphism

3.1 k-level—colored d-graphs

In this section we consider the diameter time sub—

graph matching problem : Given a labelled graph a, find an

such that (F, May H) accepts F if f. a is isomorphic to a

subgraph of F in time proportional to the diameter of F.

Unlike the graph isomorphism case , the number of nodes of

the d-graph F may be arbitrarily large . H3wever , the defini-

tion of Ma depends only on a and not on F; therefore it is

not possible to give each node of F a unique identification

as part of its state.

Suppose a has dian~ter r; if a node n is part of a sub-

graph S isomorphic to a, then all the other nodes of S must be

within distance r from n. We will show that if every node

of F has a different state from any node within distance r

from it, then we can discover whether a is isomorphic to a

subraph of F in time proportional to the diameter of F.

A d-graph I’ will be called k—level-colored if the nodes

of F are colored and any two nodes within distance k from each

other have different colors. For any node n in a d-graph F ,

the number of nodes within distance k from it is at most

c(k) d + d(d-l) + d(d-l)2+” +d(d~l) The number of

colors needed for F to be k-level-colored is no more than

l+c(k). We can assume that the color at each node is part

of the label and thus becomes part of the initial state of

the automaton at the node , and that the color of a node is

its identity .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proposition 3. Given a labelled graph ~ with diameter r ,

there is a finite state automaton Me 
such that for any k-level-

colored (k�r ) d-graph I’, the cellular d-graph acceptor

(r , M~, H) with a distinguished node D accepts F if ~ a

subraph of F, and rejects F otherwise, iii time proportional

to the diameter of F.

Proof: Given ~ we can find its spanning tree Te. Let h be

the height of Te. M
e 
works in almost the came way as 

~~ 
in

• Section 1 except that the first r steps of Ma are not

necessary since each node already has an identity . In the

process of identifying nodes of various levels, no assign-

ments can be made that requires two nodes of 13 to correspond

to the same identity , because nodes in the same assignment

must be within distance r from each other so that only one

node can have a particular identity . After h+l steps , all

the possible root nodes with the correspondence between node

of T13 and the node identities are known. M13 again initiates

signals to check for the existence of the arcs in 13 but not

in T13 as Ma did with some slight modifications. The signal

corresponding to each assignment is sent and transmitted from

neighbor to neighbor , but it stops propagating after r steps

so that it will not reach nodes at distance more than r away .

When a node in the assignment receives the signal , it makes

sure that the corresponding arcs in 13 incident to it all

exist and are connected to the nodes with the correct identit~.es.

It does nothing if those arcs exist , but if one of the arcs 



is out of order, it sends a cancellation signal to the

supposed root node to delete that assignment. Again , this

signal travels only h steps. All the assignments not can-

celled after 2h steps are good. Thus at that point, if a

supposed root node finds that it still has an uncancelled

assignment, it sends a success signal to the distinguished

node D. When D get s a success signal , it accepts . However ,

if at the end of step p=h+i+2h+(radius of F centered at D)

and no success signal is received by U, it means there is

no successful assignment and no subgraph of F is isomorphic

to 13. Therefore we can reject F. Note that no success

signal reaches D at step p iff. no success signal reaches D

after step p. Therefore at step 1, besides working in the

same way as Ma~ 
M13 also sends out a special signal F from D.

A return signal R is sent back to U when F reaches the leaf

nodes as in the spanning tree construction of Section 1.3.1

in [ 2 1. It takes twice the radius of F for D to receive R

from all of its neighbors. Then D waits for another 3h+l

steps; if no success signal is received , it rejects .1/

It should be pointed out here that each uncancelled

assignment represents a subgraph isomorphic to 3. Moreover

ther e are redundancies because the same subgraph may be

specified by different assignmentswhich correspond to differ-

ent automorphic images of the subgraph . 

— —-—P — ~~~~~~~~~~~~ ~~ — •— _ -~~~~~~~~ •~~~ —•- —- -~- ———-— —~~ _I—~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•~~ —~——- -—-—•—•—- - -- •—•--- —•— ——-—— —-•• — -- — —-~~~ — — -
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3.2  Trees

Proposition 4. For any k>O , there is a f ini te  state

automaton Mk such that for any d-graph F which is also a tree ,

in time proportional to the diameter of I’, the cellular d-

graph automa ton (I’, Mk, H) k—level-colors the nodes of F ,

i.e., the states of nodes within distance k from each other

are distinct.

Proof: Let 9~. = 1~ J whose ta] = the largest

integer ~ a. Each node’s state will have a component of the

form (i,i1,...,i~ ) where ~~~~~~ O~ i3~
.d ~~~~~ which serves

as the color of the node. At the first step the distinguished

node writes (0,O ,O ,...,O) in its state and sends this message

to its neighbors. When an uncolored node n receives a

message (i,i1,...,i~ ) from its neighbor in, node n writes

in its state (i+l (modulo k+1), j2’
j
3’~~

•
~~’
j
L’~~ 

if m is the

jth neighbor of n, and n sends this message to its neighbors.

If an uncolored node receives messages from more than one

node simultaneously, it chooses only one of them. When a

node n is colored with ( j ,j 1,...,j~,) ,  this says that if D is

the root, n is a node at level (k+l)i+j for some i�O and

311- • ,j~ specifies a path from its ances~~ r at level

(k+l)i+j—9.. if j1 ~ 0. If j1 is 0 , then 
~~~~~~~~~~~~~~~~~~~~~~~~ 

,j
~ 

is a

path from 0 where 
~h is the f i r s t  nonzero element af ter  j 1.

Given any two nodes n~ and n~ within distance k from

each other , suppose their colors are c (n ~ ) = (h1,i11...,i~ )

and c(n ~ ) = (h~~1J 1~~. .. ,j~ ) respectively. If h~ ~ ~~~ then

c(n ~ ) ~ c (n ~ ) .  If h .  = h~ then n~ and n~ are on the same 

- _ _ _ - -
~~
—_ -- - _ . - .. - - . .. . - - __ - . • 
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level of r with root D because the levels of n~ and n . are

(k+l)t1 + h . and (k+l)t2 + h. for some t1,t2; their differ-

ence is ~ k (otherwise n1 is not within distance k from n~
)~

and this implies t1 = t2. Let n be the closest common

ancestor of n~ and n ., i.e., no descendent of n is an

ancestor of both n~ and n~ . n is at equal distance from n~
kand n~~. The distance between n and n1 or n~ is ~ =

since otherwise the distance between n~ and n .  is > k.

Therefore (i 1,. •~~
j 2,~ ~~ ( j 1,. . ,j~ ) since one contains a

path from n to n~ and the other a path from n to n~~. The

time it takes for the signal from D to reach a node n equals

the distance between U and n.  Therefore the coloring pro-

cess takes diameter ( F )  time .!!

Combining the results of Propositions 3 and 4 , we see

that if a d-graph F is a tree , then we can do subgraph

matching in diameter ( F )  time . However , because of the

structure of trees —- they have no cycles , and between any

two nodes there is only one simple path we can also do sub-

graph matching without f i rs t  coloring the nodes.

Let I’ be a d-graph which is also a tree . Then any

labelled graph isomorphic to a sub graph of F must be a tree .

Let Z be a tree with root node r and height h. In the re-

mainder of this section , we describe a cellular d—graph

automaton (F , Mz , H) which accepts F if f .  Z a subgraph of

F. The action of M~ is similar to the actions of Ma and

in the previous sections . Namely , at each step i (1~ i~.h+l)
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each node n looks at its neighbors to decide if they can

correspond to the sons of a level h+l-i node m in the tree Z.

If they can , n declares i tself to qualify as the node m of

Z. The difference is that- the nodes do not have distinct

identities any more ; rather , we know that F is a tree . In-

stead of recording the assi gnments of nodes , each node n ’ s

state simply indicates the level h-i+l node it can be and

the arc end numbers leadir ~ ; to i t s  sons. Note that a node

can correspond to a few d i f f e r e n t  level h-i+l nodes with

different  sets of sons . In the next step, the knowledge of

the sons prevents those nodes from serving both as n ’s father

and son when n corresponds to a particular node m0 of Z

since n’s neighbor can see f rom n ’ s state whether it was

used as n ’s son to qualify n as in
0 
of Z.

Claim: At the end of step I (1~i~h+l) , if a node n ’s state

indicating that it qualifies as a level h-i+1 node m of Z

and its i1, i2 , . .  .~~i~ -th neighbors n11 n21...,n3 
correspond

to the sons m1, m2 , . . .  , rn~ of n~ in Z, then n is the root of a

tree* isomorphic to the subtree  of Z at in.

Proo f: When i=l , the c la im is c l ea r ly  true since the sub-

tree of Z at a leaf node consists of only the node i t se l f .

If the claim is true for  i-i ~l< i~.h+l) ,  then n 1, n 2 , . . . ,n1
are all roots of trees isomorphic to subtrees of Z at

First note that  if n qua l i f ies  as corresponding

*This tree is an acylic Subcji-iph of F.

-- ~~~~-_ ~~~~~~~~~~~~~ - -
~~~~

--
~~~~~~~~~~~~~~~~~~
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to in, then n qualifies to be the father of n1 .. .~ n). In

the trees isomorphic to subtrees of in1,.. .,m~ , all of the

nk s (lsksj) do not use n as a son, since otherwise n could

not be that 
~k

’
~ 

father. Moreover, the trees at n1~n2I...?n)

are all disjoint since they are all subgraphs of 1’ and 1’ is

a tree. If a node A belongs to both the trees at n1 and

then there exist a sequence of nodes ~~~~~~~~~~~~ A joining

“1 to A , and a sequence of nodes n2, bl, . . ., bk, A joining n 2
to A. This means that n,n1,a1,... ,a~

,A ,bk,.. .,b1,n2,n is a

cycle, a contradiction . This shows that n is the root of a

tree. This tree is isomorphic to the subtree of Z at in;

this is clear from the fact that the trees at il
k 
are isomorphic

to subtrees at ink

At the end of step h+l , all the nodes that corres-

pond to the root node of Z are identified . These nodes just

send a success message to the distinguished node D for accep-

tance. If -after h+l+height(r) sters,no success message is

received by D, it rejects. Again Mz can use the same method

as M
e 
of Proposition 3 to decide when to reject.

We have thus proved

Proposition 5. For any labelled tree Z of height h , there is

a finite state automaton M z such that for any a-graph F which

is a tree, the cellular d-graph automaton (F, Mz, H) accepts

F if f. T a subgraph of r , and otherwise it rejects F , in

time proportional to the diameter of F.

In Section 1.2.3 of [2], we showed how a cellular d—

L. 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



graph automaton recognizes trees in diameter time. Combining

this with the above proposition , we have the result that for

any tree Z, there is a cellular d-graph automaton that recog-

nizes all the d—graphs which are trees and have subgraphs iso-

morphic to Z. 

~~~~~~~~~~~~~~~~~~~~ ~~•i



3.3 k-local-homogeneous d-graphs

In the last section , we exhibited a diameter time

subgraph matching algorithm for trees without appealing to

k-level—coloring. We have been unable to find diameter time

algorithms for general d—graphs. The problems seem to be

due to the existence of cycles in a qeneral d-qraph , as

can be seen from the following examples:

Example 1: Suppose the labelled graph a is

• 

B

~~~~~~~~~

:

and part of r is: (node in)

B B

B 

2C(node n)

If the states of the nodes are not d i f fe ren t, there seems to

be no way that node n can tell that its third neighbor cannot

serve as its son since it is already used as its ancestor.

Equivalently, there seems to be no way to prevent node m from

-
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serving as two different nodes of a.

Example 2: Suppose we are looking for subgraphs to match

B~~~~~~~~~C . Suppose that part of r is

(node n1) B~~~~~~~~~~~~~~~~~~~~~~~~~~ 1
C (node n3)

A~~~~~~~~~~~ 

n 2 )

How can node n1 tell that node n 2 is not node n 3 ( and thus

not the desired structure) if the states of the nodes are

not different? In general , how can a node dist inguish the

signals from d i f fe ren t  nodes? This is the same problem as H
in [3, 4] where the automaton cannot tell apart cycles of

lengths 3 and 4.

Let us examine the special properties a tree has :

(1) There are no nontrivial cycles in a tree .

The only cycles are those consisting of a

path and its exact inverse .

( 2 )  There is only one path between any two

points .

In this section , we discuss a generalization of

L _____________________ _____________________ ______
- —•~~~~~~~~~——--•— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_________
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these properties, and define a class of d-graphs for which

diameter time subgraph matching is possible.



________________ ______ 

3.3.1 Definition of k-local-homogeneity

At each node n, H(n) = (t1,. .. ,td) tells n
that it is the t

~
th neighbor of its ith neighbor. If we

consider a sequence of numbers a1,... 1a~ ~~~~~~~ for l~.i~ j)

at n as a path n = n0,n1,. . . ,n~ such that n~ is the a~th

neighbor of n~ _ 1 (ls.i~.j) *, then H ( n )  tells node n the in-

verse of any path of length 1. Define H3 (n) : D3 ± U3 such

that if the image of (a11.. .1 a~) is (b1,. .. ,b~ ) then the in-
verse of the path ~~~~~~~~~ is b~ 1b~ _ 11...~ b1 and we have

a1 b1 a~ a~~~1 b~ _ 1 a~ b~

fl=~~0 
nl n 2 n~ _ 2 n~ _ 1 n .

It is obvious that knowing Hk at a node n implies knowing

at n for any l~.j Sk .

Proposition 6. For any k>0 , there exists a finite state auto-

maton Mk such that for any d-graph F , 
the cellular d-graph

automaton (F , M, H) can find Hk and record it in its state

in 2k steps.

Proof : Since each node knows its H—function , it can send out

messages in the form of (i;t~) to its ith neighbor (l~.i~d).

When a node in receives (i;t~) from its t~th neighbor , it

*From now on, we will use the notations “n=n 0,...,n .” and
“a1,... ~~ at n” interchangably .

— ~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~ - ~~—~~~~_— —~~~ — - — — - — — — — ~~~~~~
—
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sends out messages (i~~j ; t~ 1t~ ) to its j th  neighbor n~ (l~.j~ .d)

where n is the t~ neighbor of n~ . In general , for 2,<k , when

a node n receives (i1y i2,...,i~
;ti,t2,...,t~

) from its t~,th

neighbor, it augments the message and sends out

to its jth neighbor (l~.jsd )

where n is the t~th neighbor of its jth neighbor . If n ’s jth

neighbor is a # node , it makes a special mark . After step

k, instead of augmenting and sending out new messages , the

messages backtrack , i.e., the message (i1,i21... ~~~~~~~~~~~~~~~~

travels along the path 
~k’•~~

• ,j2 , j 1. (A pointer is kept so

that a message knows which j~ to use next.) At step 2k ,

each node n knows from the messages it receives that the

image of 
~~1’”- ’~ k~ 

atn under Hk is 
~~~~~~~~~~~ 

Hence

:~~. 
the inverse of the path 

~l’•~~
•’
~ k 

from n is 
~~~~~ 

,j1. If a

path does not reach length k because a * node is encountered ,

the node can tell this from the special mark at that

position. Note that since each message only travels distance

k away and each node has at most d+d(d-l)+• . .+d (d_l)k~~ nodes

within distance k from it, the number of signals at any

node at each step is bounded. !!

Alternate proof: At the first step , each node writes in

its state the inverses of paths of length 1 from it , i.e.,

records its H-function . At the next step , since each node

can see its neighbor ’s states , it can tell the inverses of

paths of length 2. More specifically, suppose

11(n) = (t1,t2,...,ta), H (m) 
= (S l,S 2 , . . . I S

d
) and in is the
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ith neighbor of n. At the end of step 1, n ’ s state has

((l;t1), (2;t2),...,(d;td)) and m ’ s state has

((l;si), (2;s2),...,(d;sd)). If t~ = j then i = s~ by the

definition of H. At step 2, part of n ’s state looks like

this: (i11;t~ 1 s1)1 (i,2;tl, s2),...,(i,d;tI,sd). The same

kind of information is gathered from each neighbor of n ,

so that the inverses of paths of length 2 are recorded in

the state of n. Again , if a neighbor is a # node , a special

mark is recorded in the state so that it will not attempt to

extend that path further. Therefore , at each step, we can

use the latest information each node acquired at the pre-

vious step to extend the paths ’ lengths by 1. At the end

of step k, each node ’s state has Hk coded in it.//

In a d—graph F , a node n knows all cycles of length up

to k if given a sequence of arc end numbers ~~~~~~~~~

(l~a.~ d, l~ j~k), hence a path of length j~.k starting from n ,

node n knows whether or not this path is a cycle , i.e.,

n = n0,n11... ~~~~~~~ = n , where n1 is the a the neighbor of

“~.-1 
(l~i~.j). A node n knows all equivalent paths of total

length up to k if given any two sequences of arc end numbers ,

hence two paths from n, with sum oi their lengths ~~~ node

n knows if they lead to the same node. r is said to know

all cycles of length up to k or know all equivalent paths

of total length up to k if f. every node in F knows the re-

spective information. The following example shows that knowing

Hk does not imply knowing all cycles of length j nor knowing
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all equivalent paths of total length j for some j>2.

Example:

3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

:
3 3 ~~~ 

#

H(n) = (2,1,3) for every node n and so 11k(~ ) is the

same for every node. However, the cycles at node A and node

B are quite different. At A , 232 gives a cycle,while at B ,

232 is not a cycle. At A , 23 and 1 reach the same node,but

at B, 23 and 1 do not meet.

Proposition 7. A node n knows all cycles of length up to

k if f. n knows all equivalent paths of total length up to k.

Proof: For any d-graph F , there is a cellular d-graph auto-

maton that finds Hk in constant time (depending only on k).

Suppose n knows all cycles of length up to k. Given any two

paths P1,P2 whose total length ~ k, n knows 11k; thus it can

invert one of the paths, say the shorter one P2, and append

the inverse of P2 to P1. The result is a sequence of arc end

numbers of length s k. This sequence is a cycle if f. P1

and P2 reach the same node. But n knows all cycles of

length up to k, therefore n knows all equivalent paths of

total length up to k.

- - _ - -~~~~~~~ • - -_-_-~~~



Conversely ,  suppose n know s all equivalent paths of

total length up to k. Given a sequence of arc end numbers

(a1) of length k , n can simply break it at some point

into two, using its knowledge of Hk to find the inverse of

one of them. This yields two paths at n, the sum of their

lengths = length of (at) ~ k. (a1) is a cycle iff. these

two paths reach the same node. But n knows all the equi-

valent paths of total length up to k; therefore n knows all

the cycles of length up to k.,’!
Having the equivalence given by Proposition 7, we can

define a d-graph I’ to be k-locally-homogeneous if at each

node n of F , H(n) and all cycles of length up to k or all

equivalent paths of total length up to k are known. Clearly,

a d—graph that is a tree is k-locally-homogeneous , since

there are no cycles , and no two distinct paths can be equi—

valent.

. •

~ 

.~~~~~~ . • . . _•
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3 . 3 . 2  Subgraph matching problem for k-locally-homo-
geneous d-graphs

Let w be a labelled graph such that the degrees

of the nodes of w are ~ d and the diameter of w is r >O* .

We ~ilI define a deterministic cellular d-graph acceptor

with finite—state automaton M that will recognize those k—
(A)

loca]Jy-homogeneous d-graphs (k>2r) having a subgraph iso-

morph .c to w. For each w , taking any one of the nodes as

the r~ot node and using the methods described in [ 2 ], a

spanning tree T of w can be constructed , where the height

of T is h~.r.t~)

The diameter time matching of w to a subgraph

of any k-locally-homogeneous d-graph F will be done by first

trying to identify the subgraphs of F isomorphic to T
~
.

These subgraphs will be stored in the state of the node

corresponding to the root of T in the form of specifying arc

end numbers leading to each node corresponding to a node of

T
~
. Then using homogeneity conditions , the nonspanning

tree edges of w can be checked.

In identifying subgraphs of F T
~
, the action

of M
~ 

is similar to the actions of Ma~ 
M13 and Mz defined

earlier. Namely, at each step i (l~.i~h+l), each node

decides if it can correspond to a node in at level h+l-i of

T
~ 

by checking if its neighbors can correspond to the sons

*If r=0 then w has only one node; subgraph matching then be-
comes the label detecting problem of [21. 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of in in T . However, the nodes are no longer colored dis-

tinctly and F is not necessarily a tree. Therefore , each

node n records in its state the nodes of T
~ 

that it quali-

fies to be and the arc end numbers leading to the neighbors

corresponding to the sons of n, together with the informa-

tion recorded in each of those neighbors. More specifically ,

Step 1: Each node checks its label to decide if it can be a

level h node (a leaf node) of T . It then records in its
(A)

state a list (Em 1], [m 2]~~...~~[m~]) of nodes of T~ that it

qualifies to be. The non leve l h nodes are in some neutral

state.

Step 2: Each node n with the proper label , and having

L neighbors which can correspond to the sons of a level h-l

node, writes in its state :

- ([m1,(a11,[m11]), ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Em 2 ,  (a 21, [m 21 ) )  ,. .. , (a~ , [m~ 1) ] ,

Em 5 , (a 51i [m ~ 1] )  , ... , ( a~ , [m 1)]

where 
~~~ ~ ~~~~ 

if t ~ t’. Here m1,m2,...,m5 are the level

h—l nodes of T
~ 

that n can correspond to, and ~~~ are the

level h nodes of T
~
. [m1,(a~1,[m11

]),...,(a. . ,(m..])]

means that if n corresponds to node m~ 1 then its a~~
-th

neighbor corresponds to node 
~~~ 

of T
~ 

where ~~~ (1~ t~.j~ ) are

the sons of m1 in T~ . This specifies a subgraph of I’ as

shown below. Obviously , the mi’s are not necessarily distinct.

All the other non level h-l nodes are changed to the neutral

L 
- 

_

-
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state regardless of what state they were in.

ii “in.a
~i 1.

. S S

~~~
ii

“‘ in.12

In general, at step 1, l<is.h+l , a node n that c~uaLifies to

be a level h+l-i level node changes to a state of the form

(S1,S2,.. .,S ) where each S. specifies a subgraph of F at n

and S~ = ~~~~~~~~~~~~~~~~~~~~~ ~A~1 )] where A
~t 

is [m it
]

or [m’~~(a~1~A~,1) (a~~~A~~ )I and A
~t 

is in the state of

the b
~t

-th neighbor of n.

At step h+l , since T
~ 

has only one node at level 0,

all the nodes that can possibly correspond to the root of a

subgraph isomorphic to T~ have that subgraph recorded in

their states. However , as shown by the following example ,

this subgraph is not necessarily a tree.

Example: Let T
~ 

and F be the graphs shown below . 

-~--• ---~~--— ~~ • _ -~~~~ -- -- —.~~~~- -~~~~~~- --- --



F:

E ( ) E(n1)

C(m11) ~~~~~~~~~~~~~~~ F(m12) 
C(fl2)
l/ 

~~~~~~~~~3~~(~ 4)

A(m21) A(m~~~ \23 

A(n~~~~~~~~~~~~~~~~ 3 2

The following table summarizes the state changes of

the nodes of F at each step:

Node Step 1 Step 2 Step 3

b b ( [ m0 , ( l ,A2 ) , ( 2 ,A3 ) 1 ,
[m0 ,  (l ,A2 ) , (3,A~) ] )

b ( ( m11,(2 , ( m 21] ) ) )  b

n3 b ([m12,(1,[m22]),(3,[m23fl]) b

n4 b ([m 12,(l,(m23]),(2,[m22])]) b

(Em 21], Em22]) b b

n6 (Em 23)) b b

n7 (Em 21] , [in23]) b b

where A2, A3, A4 are the states of n2, n3, n4 at step 2.

The state of n1 shows that there are two subgraphs as shown

~ 

~~~~~~~ -~~ -~~~~~~~~-- -  - - -.~~~ - -  -~~~~_ • - -— - - - -—- -~~~~



below . However , [m0 1( l ,A2 ) , ( 2 ,A3 ) ]  is not a tree , and

therefore cannot be isomorphic to T~ .

~m11~~~~~~~~~~~~~~~~ 
~~ l 

1> 2

‘Wfl2j~ “rn22
Em0,(l,A2), (2,A ) ]

3 [in0, (l ,A2), (3,A4)]

It is easy to see (by an induction proof) that if the

subgraph S obtained at a node n at step h+l is a tree , then

S is isomorphic to T
~
. S is a tree iff. it contains no

cycles. Hence , since F is k—locally—homogeneous , n can tell

which subgraph in its state is not a tree , and can delete

that subgraph from its state at step h+2. All the subgraphs

that remain are trees isomorphic to T .  [In fact, the task

of cycle checking can be done so that each node declares it-

self to be a level h+l-i node only if its subgraph is a

tree , so that many non-tree subgraphs are deleted before

step h+1.] At step h+3 , node n checks to make sure the

edges of w not in T exist, using the knowledge it posesses

about k-local homogeneity . For example , suppose in
1 

should

—- - - •~~~~ - - —S - — — - - - - --~~~~~-~~~~~--- - - - --— — — - ~~ — —- - - -
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be connected to m~ in w, and the tree path in the subgraph

from the root node n to the corresponding nodes of m~ and

are a1,... 
~~~ 

and bi,...,bt ; then node n just has to

make sure that there is an arc end number c such that

a1,... ,a~~
,c and b1,. . . ,bt. both reach m~ . If any non-tree

edge does not exist, that subgraph is deleted from the state

of node n.

If there is a tree left in the state of any node , then

the node sends a success message to the distinguished node

to signal acceptance. If the distinguished node receives no

success message after step h+3+diameter(F) it rejects F.

Again the distinguished node can tell that h+3+diameter(F)

steps have passed by the same method used in Proposition 3.

We have thus proved

Proposition 8. For any labelled graph w with degree ~ d and

diameter r, there exists a finite state automaton M such

that for any k-locally homogeneous d-graph 1’ (k>2r) , the

cellular a—graph acceptor (1’, M
~
, H) accepts F if u a sub-

graph of r , and rejects 1’ otherwise, in time proportional

to the diameter of F.
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3 . 4  Homogeneous d-graphs

A two—dimensional array may be regarded as a 4—graph ,

provided we assume the boundary (#) nodes are distinct so 
-

that each # node has only one neighbor , i . e . ,

—A—#—# A—# #
is regarded as I /* I . The arc ends at each

—B—C—D— —B—C—D-
i l l  I I I

node are labelled with l ( = N ) , 2 ( = W ) , 3 ( = S ) ,  4 ( = E ) . Each

node n knows the inverse of any path starting from n , since

1 and 3, 2 and 4 are always inverses of one another. Each

node also knows when a path is a cycle by checking if the

number of l’s = the number of 3’s and the number of 2’s =

the number of 4’s. Therefore a two-dimensional array is a k

locally-.homogeneou3 d—graph for any k~ l. Moreover , all the

k-local—homogeneity conditions at each node are the same in

the sense that if a path from a node exists (no # node is

encountered) then the same criterion determines , for all

nodes , whether or not the path is a cycle .

A d-graph will be called k-homogeneous if all the k-

local-homogeneity conditions are the same for every node of

F. If the d—graph is k-homogeneous for every k�l , we call

it simply homogeneous. As indicated above , the two-

dimensional arrays are homogeneous 4-graphs. It is easy to

see , analogously, that any n-dimensional array is a homo-

geneous 2n-graph.

— -r n~~~~~~~~~~- - - ~~~~~~~---~~~~~ — • - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A natural way to specify the homogeneity conditions of

a d-graph is in terms of group generators and relations. We

can regard the d arc end numbers at each node as the gener-

ators. A relation s1s2•• s~ 
= e (where e is the identity)

says that at each node n, the path s1s2• 
. is a cycle .

Thus knowing the relations implies knowing all the cycles.

Moreover , the cycles of length 2 at each node are the same .

If 
~l~2 

= e then when one end of an arc is numbered with s1,

the other end of the same arc must be numbered with 
~~~ 

thus

= s2
1. This shows that the d generators must form a

group.

Mylopoulos and Pavlidis in [5, 6] described a number

of graphs corresponding to different finitely presented

abelian groups. Any finite subgraph of one of these graphs

(with the appropriate * nodes added to make the degree ex-

actly d at each non-# node) is a homogeneous d-graph. This

is illustrated by the following three examples.

(1) Hexagonal arrays and (semi)-regular tessellations

Let G1 
= {l ,2,3,4,5,6)/ ( l

_1
=4 , 2~~=5 , 3 1=6 , 13=2 ,

i j  = j i  for any i ,j in 1,2,.. .,6}}

If 1, 2, 3 denote the directions “right ” , “above

right” , and “above left” , then the graph of G1 is the hex-

agonal array shown below :

_ _
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~~ 

1

The three regular tessellations and eight semi-

regular (Archimedean) tessellations in the Euclidean plane

as shown on pages 24 , 41 and 42 of [
~ 

] can all be regarded
as homogeneous d-graphs. For example , the tessellation

(4,8,8), which has three polygonal faces surrounding each

vertex, where the numbers of sides of the faces are 4 , 8 and

8, can be represented by the generators {l ,2,3} and the re-

lations 1 1=2 , 3 1=3~ llll.=e, l3l3l3l3=e} if the arc ends

are numbered as follows:

lX2 12 I
2 Z’\ l/~\

~~~~~~ ~~~~~~~ \l2
I~/ i

I~~

[3 13 13
l/\ 2 l/\ 2

~~~~~ \~~3 3 3 / \~~3 3 2/ \l
l\ yc—j\ A~~~\ 7~

_ •
2\/l 2\/j 2\42

3 3 3 

-.-•.-- -—•-- - •—----~ . — - - -
~~
-- - - -~~• -  - -- — - -S — - -  _~ ~~~~~~~~~ —--- - -- - ------ -
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The more complex tessellation (3,4,6,4), which has four

polygonal faces surrounding each vertex , where the numbers

of sides of the faces are 3 , 4 , 6 , and 4 in cyclic order , can

be represented by the generators (l,2,3 ,4} and the relations

{l
_1
=2, 3 1=4, 333=e , 1313=3 , 16=e), if the arc ends are

numbered as

‘V 3
~2 21

2 
2j~~~~~~J~.

/~~~ 
;)~~4\ /3~~~~3~~~4\ /

3\/”4 4)’c,~ 3\/
’4 4 ,

lc
\3 

~
~~~~~ ~/ \~i ~—i~~-~ 3/ \A ~~~~~2~~—~~l.2~ 4 31 14 31

12 l~ 12
, 2j~~~~~j~ 1 2

1 2 ~~~~~~~~~ r... 2 ~~
.‘-.. / ~~2

~~~~~X’~~~~ 
4\ /3  ~~~~~~~ 4\ /3 ~*-~

---
~

\ 4 ~~ 3/ \ ~ j~ 3/
—)

~i 
2~~~—~~~l 2 r’

2 if J 1
2 (3 4f1

— 4\ /3~~ ”

(2 ) t-ary trees

In a t—ary tree each node has t+l neighbors . For n~1

let G2,n = {1,...,2n}/{i~~~ i—l (i=2 ,4,... ,2n}

~~~~ = {l , . . .,2n+ 1)/ (C i 1=i.- lIi=2 ,4 ,...,2n}U{ (2n+l)~~~~2n+1} ) }

Then the graph of G2 n  is a t-ary tree for t = 2n-1 ,

and the graph of ~~~~ is a t-ary tree for t = 2n. 

—~~~~~~~ -—- .-• - -—- ---- - - ----•- -- - - - - ---- —



~~1

- 
1

~~~ 3 1
I 2n- 1
4j

2n 1
,//~\ 2n ~~~~~

,774\ /7 5\\ /2/ \2~~~~~

4/ 31 ~~n_ l/ /  4 6\~~~\2n_l 2/ lI  
“‘

\2n_3N2n_l

t-ary tree for t = 2n-l

1
2n+l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t-ary tree for t = 2n
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Note that G2 and G~ are rr~ -abelian since 23 ~ 32 in

both groups .

(3) Complete graphs

For n~l, let D2÷l = {i 1 
= n+i~ l~.i~.n~ L~

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1n1

~~~(2n+1)=e}
U {i ]~ J 2~ j~ n}.

It is not hard to show that the graph of G. {l , . . . , 1- 1) / D . ,  i.~3
is C1, the complete graph with i nodes.

C3 : 

~~~~~1 III~~~~ 2 Ii
C4 :

I
C

6
: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 4 1
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In general:

C2n+1 : 

n14
~~~~~~~~

3 3
~~~ i

n+l

C : n+l2n+2 3 n +3 2 n+l1 n 
+

1
1 n+l

• n n
. + +

n
+ 

n
1

n+1 1
1 n+l

Since every homogeneous d-graph is k-locally-homogeneous 
- 

-

for all Ic, the results of Section 2.3 imply

Proposition 9. For any homogeneous d-graph , subgraph match-

ing can be done in diameter time by a cellular d-graph auto-

ma ton.

It should be pointed out here that when we consider

arrays as homogeneous d-graphs, the notion of direction in

an array is not important in graph isomorphism, namely 

- -  S ~~~~~~~~~~~~~~~~~~~~~ ~~~~~ --
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3.5 Application: clique finding in d-graphs

In a clique all the nodes are neighbors of each other.

• Since every node of a d-graph has at most d non-# neighbors ,

the size of any clique in a d-graph is ~ d+l. This makes

the clique finding problem in a d-graph much easier than

that in a general graph.

Let us first consider the simple problem of finding

• the largest clique that a given node n belongs to. At the

first step, each non-# ith neighbor of n marks its state

• with i (l~i~.d-) . At the next step , each neighbor in of n

writes in its state a list ‘1’~~~ ‘
1~~ if the i1th,... ,itth

neighbors of n are also neighbors of in (the list may be

empty). Thus at the third step , n can tell from its neigh-

bors ’ states which neighbors form cliques with it, and the

sizes of the cliques. It is easy for n to record in its

state the size of a largest clique and the numbers of the

neighbors which are nodes of the largest clique. It is also

not hard to mark the largest clique or even to mark all the

cliques that n belongs to, because the number of such

cliques is 
~~ 

(
~ ) + (~ ) + + (d) < ~d Therefore the time

required to find the cliques at a node is constant.

Now consider the problem of finding the size of a

maximal clique in a d-graph F in diameter (of F) time. If

we find the size of the largest clique at each node of F ,

one node at a time , and then transmit the maximum of the

sizes to the distinguished node , this takes area time. But

largest clique finding at many nodes simultaneously will

~~~~~~~~~~~~~ —S-.~~~~~”- - - -~~~~~~
.-

~~~~~~~
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involve d i f f icul t ies, since the signals from different

nodes are not distinguishable. A better approach is to try

to find subgraphs of F isomorphic to Cd+l, i.e., cliques of

size d+l; if none exist, then we try subgraphs isomorphic to

C
~
, C

~...,1,...,C3,C2 in order (there are always subgraphs

isomorphic to C2 if r is connected and has more than one non—

# node). When for some i, a subgraph isomorphic to C~ is

found , i is transmitted to the distinguished node D as the size

of the maximal clique in F. When attempting to find sub-

graphs isomorphic to C~ (2~ i~.d+l) in diameter time, the

difficulties of subgraph matching in a general a-graph as

discussed in Section 2.1 also arise. However , if F is homo-

geneous, or 3-locally-homogeneous or 1-level-colored , we can

detect the existence or nonexistence of C. in diameter (of
1

F) time. Therefore the size of a maximal clique can be

transmitted and recorded in the state of the distinguished

node of F in time proportional to the diameter of F , since

there are at most d C. ‘s to be checked.
1

When a subgraph isomorphic to C~ is identified , the

node n of F corresponding to a special node (say A , the root

of a spanning tree T
~~
) of C~ can be identified and the sub-

graph isomorphic to C
~ 

can be recorded in n ’s state.

Therefore it is easy to mark the cliques of r isomorphic to

C1. Note that if the nodes of C1 have the same label , then

when node n identifies itself as corresponding to node A of

C1, there are (i—l) I different correspondences of C~ to

the same i-l neighbors of n in F , since each qualifies as

~

• _ .
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any one of the i-i nodes of C1. n can get rid of these re-

dundant assignments by just specifying which i-i of its

neighbors belong to C1. It is also straightforward to see

that each node can record in its state the size of the

largest clique it belongs to and which of its neighbors form

such largest cliques.



4. Concluding remarks

Diameter time algorithms for the graph and subgraph

• matching problems are presented for trees, k-level-colored

d-graphs , k-locally-homogeneous d-graphs , and homogeneous d-

graphs. If fast algorithms are found to k-level-color a

d-graph , then we will also have a fast algorithm for sub-

graph matching.

k-local—homogeneity seems somewhat artificial ; how-

ever, a special case of it, namely homogeneity , holds for

many important classes of d—graphs.

Homogeneous d-graphs may be considered as a natural

generalization of both arrays and trees. The arc end number-

ing of a homogeneous d—graph is consistent. The description

of the homogeneity conditions is the same at each node. In

general , the description is also f in i te  and compact ( for ex-

ample using group presentation) , so that it can easily be

stored in the finite state automaton at each node of the d-

graph. It would be of interest to further study homogeneous

d-graphs.
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